skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kushnir_Friedman, Kateryna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betz, Markus; Elezzabi, Abdulhakem Y (Ed.)
    SnS2 is a two-dimensional (2D) layered semiconductor with a visible-range bandgap (~2.3eV), high charge carrier mobility, long carrier lifetimes, and good environmental stability. This study explores the impact of zero-valent metal intercalation into the van der Waals gaps of SnS2 on charge carrier dynamics. We demonstrate that metal intercalation enhances optical absorption in the yellow-to-IR range and induces metal-dependent bandgap shifts. Time-resolved THz spectroscopy reveals that different metals uniquely influence photoconductivity dynamics: We find that intercalation with Bi, Ni, and Fe shortens the photoconductivity decay times, whereas Rh intercalation results in a slower decay. These findings highlight the potential of metal intercalation to tailor SnS2 properties for diverse applications, from solar energy conversion to high-speed photodetectors. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Abstract Above‐band gap optical excitation of non‐centrosymmetric semiconductors can lead to the spatial shift of the center of electron charge in a process known as shift current. Shift current is investigated in single‐crystal SnS2, a layered semiconductor with the band gap of ≈2.3 eV, by THz emission spectroscopy and first principles density functional theory (DFT). It is observed that normal incidence excitation with above gap (400 nm; 3.1 eV) pulses results in THz emission from 2H SnS2() polytype, where such emission is nominally forbidden by symmetry. It is argued that the underlying symmetry breaking arises due to the presence of stacking faults that are known to be ubiquitous in SnS2single crystals and construct a possible structural model of a stacking fault with symmetry properties consistent with the experimental observations. In addition to shift current, it is observed THz emission by optical rectification excited by below band gap (800 nm; 1.55 eV) pulses but it requires excitation fluence more than two orders of magnitude higher to produce same signal amplitude. These results suggest that ultrafast shift current in which can be excited with visible light in blue–green portion of the spectrum makes SnS2a promising source material for THz photonics. 
    more » « less